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ABSTRACT

We prove here that, given an open subset S1 of R N the usual

parabolic capacity on EO,T( x Q associated with the heat operatorL at
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SIGNIFICANCE AND EXPLANATION

In recent years, parabolic variational inequalities (V.I.) have been

intensively developed in a functional analytic setting involving many function

spaces. As in the case of elliptic V.I., the tools of potential theory have

also proven to be most useful for solving and interpreting parabolic V.I.

Several facts exhibit a close relationship between the functional analytic and

potential theoretic approaches. Among them is the result provided in this

paper. Let us describe its content.

Just as for the Laplacian operator, a capacity had been associated with

the heat operator in order to solve various problems in potential theory. On

the other hand, functional spaces - mainly Sobolev spaces, had been introduced

to solve variational inequalities involving the heat operator. We prove here

that this capacity can be defined in terms of the topology naturally induced

by these functional spaces. This leads to interesting new results for

parabolic variational inequalities.
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PARABOLIC CAPACITY AND SOLEV SPACES

Michel Pierre

INTRODUCTION

Let 2 be an open subset of RN  and T > 0. The usual parabolic capacity on

10,T[ x 1 associated with the heat operator E - 2 - A is defined byat
V W C ]0,T[ x 0 open, c0( () = f d E u

]0,T [x

where u is the capacitary potential of w , that is the solution of the (formal)w

variational inequality:

u 1 a.e., u(O) = 1(0), u(t,-)l = 0

(I)

-_Au ) 0 - Au 0 on [u> ]

au

(Here 1 is the characteristic function of w . Note that Eu *-- - Au is a

nonnegative measure on ]0,T[ x Q ). Another definition in terms of measures can also be

found in [2].

We show in this paper that this capacity can be defined using only the Hilbert norm of

the space:

0 atW= {v L2 (0,T;H (2)) v 2 L1, -1()}

Namely, if we set, for any open subset w of ]0,T[ x 12

c(w) = inf(I1vl 2 ; v ) I a.e. ,

where
AvIW lvii+ IiU

Lv 2 !2(,T;H10(M),  tL 2(0,T;H- (1))

then there exist a,b > 0 such that:

Sponsored by the United States Army under Contract No. DAAG29-S0-C-0041. This
material is based upon work supnorted by the National Science Foundation up,'er
Grant No. MCS78-09525 A01.



(II) w , a • c ( ) c(,j) 4 b c0 (L)

It is well-known that this space W arises as the natural space of test-functions in

numerous parabolic variational inequalities (V.I.) of type (1) (sep Lions-Stampacchia [4],

Lions-Magenes 151, Lions [31, Mignot-Puel [6] etc ... ). On the other hand, as in the

elliptic case, the tools of potential theory have also proven to be most useful to solve

and interpret these parabolic V.I. (see [11,(811. The above result emphasizes the strong

relationship between the two approaches.

A direct consequence of (II) is that any element of W has a quasi-continuous

representation. This fact (that we established in [8]) is an important tool to deduce

fundamental properties about the structure of parabolic potentials (i.e. the functionE

u E L 2(0,T;H (P))W L'(0,T;L 2 )) such that a - Au 0) (see [81, (10] for these
0 7

results).

Another conseauence is that, as in the elliptic case, "L
2
-estimates

" 
can be used to

evaluate the parabolic capacity of a set. In the same spirit, we also show here the

following result: if u is a parabolic potential greater than or equal to 1 on W, then

the capacity of w can be estimated by the norm of u in L2(0,T;HI(Q))

SL (O,T;L 2(Q)).

Lastly, this suggests that for the nonlinear problems associated with operators of the

form

- - div A(x,u,Du),

the natural capacity can be defined by the norm of

W = {v LP(0,T;W '()); Lu Lp'(0,T'W-Ip'(S))

p a

where p 1]1,-[ is suitably chosen and -1 + - = 1
p p'

In this paper, we state our result in the general settinq of Dirichlet parabolic

spaces so that it can be applied to qeneral elliptic operators with Dirichlet, Neumann or

mixed boundary conditions.
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1*). Parabolic Dirichlet space

Let X be a locally compact space, countable at the infinity, a Radon measure on

X whose support is X. We denote K(X) (resp. e(X)) the space of continuous (resp.

nonnegative and continuous) real functions with compact support in X • The space K(X)

is equipped with its usual locally convex topology.

Let V be a Hilbert space with the norm 11-A; we assume that V is embedded into

L2(X), the space of (classes of) real square integrable functions with the norm

1ul 2 -[ u Wxdt(x) ]/2
x

Then, if V' is the dual space of V , we have

() V &- L 2X) '- V

The scalar product in L2 (X) as well as the duality (V',V) will be denoted by C.,o).

We will assume:

(2) K(X) n V is dense in V and KX).

Example 1. (a) X =RN V -H I(RN), V' H-HlRN).

(0) X - open set in RN, V - H'(0), V' - HI M

Y) X - , V - H (f) ( regular bounded open set in aN).

(6) X = {1 point), V " L 2X) R .

Given T > 0 , we denote Q - [0,T[ x X equipped with the Radon measure

dt 0 where dt is the Lebesgue measure on [0,T[ . K(Q) will denote the space of

continuous numerical functions with compact support in Q , equipped with its natural

topology.

Now, associated with V , V', we have

V L2 (0,T;V) and its dual V' = L2 (0,T;V').

[ I v F .Nd
dt

These spaces are Hilbert spaces with the norms:
2T 2 + v,2

=II 11~ I 
2
dt, flVAI fvI IIvIf~d , - 2 avL

V J V V at V,0 0 ,

Let us recall that W is embedded into C([0,T[; L2 (X)) (see Lions-Magenas [51).

Ii
T.at is X is the union of a countable number of compact subsets.

-3-
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As a consec;uence of (2), one can show that (see [RI):

(3) MQ) W is dense in U' and K(Q).

-hte oferators A( t).

For A.e. t , let a(t,.,.) be a bilinear form on V x V satisfyinq:

(4) V u,v V - V , t - a(t,u,v) is measurable

(5) 3 M ) 0 , V(u,v) - V x V , a.e. t F (0,T), la(t,u,v)I 4 MlluIl • lvl

2(i) 2a > 0 , V v I V , a,e, t ( (0,T), a(t,v,v) > Uvll

With a(t,.,.) and its adjoint a*(t,u,v) - a(t,v,u) are associated two continuous

.o,,rators from V into V1 defined by

'Vu,v V , (A(t)u,v) - a(t,u,v), (A (t)u,v) = a (tuv).

We will also assume that A(t) and A*(t) satisfy maximum principle properties,
+

:;amel that the contractions r r-+ r and r -. r A I operate on V equipped with

a and a* that is:

(7) V V c V , v V, v t V and a.e. t E (0,T), a(t,v ,v) ) 0

V and

(A) a.e. t E (0,T), a(t,u + u+ A I, \u \- ;P %

a(t,u U+ A U + u ^ 1) 0

Examples 2. Corresponding to the choices of X and V in the examples above one can

.uce-essively choose:
__ _ __ _ N

(a) a(t,u,v) = al(X't) ai a__va
i, --I N a i x x -I[ R N Iixt .

+ ( ct0 (x,t)u v dx

!1
N

w r atj ,  c CO . ( O0,T[ x R )  
and satisfy

V N a r2'
au > 0, I~R, a sc n 2R a= 

ai j 
ri 1 ) A.R. on

Then, a(.,.,
°
) satisfies (4) and (1). It satisfies (7) and (8) if c ) 0 Ind

,1 '1-S (A) if ) 4 for A lare enough. Since we will study parahnlic nrooertjo-,
0

&A itpr noint jq not a reqtrit'in.

-4-
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(B), (Y) One can choose a(-,-,*) as .nove where one replaces RN by

( ) Take a defined by

a. e. t E (0,T), Vu,v -E R , a(t,u,v) - a(t)uv

where a E L (0,T), a ; 0

Parabolic potentials.

Definition 1. We shall call parabolic potential any element of

2 a 2P - u - L (0,TV) r. L"(0,T;L (X)); Vv , W with v(T) = 0, v 0

[( - Lv (t), ult)) + a(t,u(t), v(t))]dt ; 0}.

0

Remark. We will often omit the variable t in the integral above and write it as

ST (- *v , u) + a(uv)

Thanks to Hahn-BSanach theorem, we have (see [8],[10]):

Proposition 1. Let u c P 1 then there exists a unique Radon measure on Q , denoted

Eu , such that

V v E W n K(Q) with v(T) - 0

fT C(- L ,u) + a(u,v) = f v d( Eu).

0 0
Details are given in [8], [10] about the space P rid the measures Eu • Let us

just make them explicit in a particular but typical example.

Example 3. Let X = , V = HI(Q), VI = H-I( ) and

V t C [0,T], Vu,v E V , a(t,u,v) - f Vu Vv

2 1 2Then, if u E L (0,T;H (M) n L (0,T;L (0)),
au

(U E P) (U ;P 0 , T - AU > 0 n (0 T )

Moreover,
+ au

Eu -. u(O )dx 0 + T- A U

where dx0  is the Lebesgue measure induced on {0) x P and

u(0 ) = ess lim u(t) in L 2( Q).
t+0

more examples are given in [8].

5-



20) The main restilt.

Let us first recall the usual definition of the parabolic capacity assoc]atel with the

operators A(t).

For any open set - of Q , we consider

P = u' P , u ) 1 a.e. on w)

Then, if P is not empty, it has a smallest element u called the capacitary potential
W

of u (see [8], [10] for a proof).

Definition 1: For any open set w C , we set

f d Eu if P 30

C0 (W) 
= 

W

0 + if P

For any E Q , we define:

capacity of E = c (E) = inf c Mw)
0 0

w open

Now let us define two different capacities. For that, we denote A the space

V" L (O,T;L 
2 

M) with the norm:

Ilul12 IuI1
2 

+ sup ass Iu(t)I 2
A tt(0,T) 2

Definitions 2 and 3. For any open set w c Q , we set:

c 1 (W) = inf"!u IIA; u P P, u ) 1 a.e. on w)

c2(W) infi~v w ; v c U'+, v ) I a.e. on w)

For any E-- Q, we define:

C1(E) = inf ci,) , c2 () = inf c2 (C)
CFC

open w open

AL-
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Then, we have the main result.

Theorem 1. There exist a,b > 0 such that, for any E C Q

i) a c0 (E) 4 [cI(E)] 2 b c0 (E)

(ii) a • c0 (E) ' [c2 [E)l
2  

( b • c0 (E)

Remarks. According to this result, to estimate the parabolic capacity of a set E , one

can

i) Find u e P with u ) 1 on a neighborhood of E and compute the A-norm

of u , or

(ii) Find v c W with v ) I on a neighborhood of E and compute the W-norm

of v .

Note that the definition of ci() still involves P and hence the operators A(t),

but it uses the Hilbert-norms of V and L
2
X) instead of an "L

1
-norm" as in the

definition of c (W).
0

The interest of the definition of c (.) is that it only involves the topology of the

Hilbert space W and does not depend on the operators A(t).

Recall that W ^ ; so the topology of A is weaker than the topology of WU

But it is also sufficient to estimate the capacity of a set if one uses elements of P

If ciC.) and c (.) are not generally "strong" capacities, they are however "weak"
1 2

capacities. Namely:

Proposition 2.

Ci) For i = 0,1,2,

(a) E1 c E2  ci(E) c i(E 2 ).

(b) For any nondecreasing sequence (En) of subsets of

c. C u ) = sup c CE
I n n n i n

(c) For any nonincreasing sequence (Kn) of compacts of 0

ci C K ) inf c(1 ).

n n n 1 n

(ii) (Strong suhadditivity) VEj,E2 c Q

c 0E J E2 ) + c (EI r ) C0(E ) + c n(E ).

-7-



(iii) ("Weak" suhadditivity) For i = 1,2, VE 1 ,E 2  )

c i(E1  E 2 ) c i(E 1 ) + ci (E 2).

The properties of co( ) have already been studied in [8] (or [10l); we sha'1 not

,eProduce the proofs here.

Only the property (b) is difficult for c1 (.) and c 2). It will result from

important properties of the spaces P and W2 that will also be used to prove the part 'il,

of Theorem 1. But let us begin by the proof of (i) in Theorem 1 which is fairly e.

Proof of M) in Theorem 1.

It is sufficient to prove it for any open set c Q

Let us prove that, if P * ;

(9) Iu IN 2 (2 + -) c 0 ( ).

in order to compute, we need to approximate u by more "regular" notentials. T:,,

the purpose of the Theorem I-I in [8] which says that the solution of:

(10) u W, u (0) = u(0), u x + X(a-- + A u =u (X > 0),

satisfies

u x E P , u u fd <u Ix  d E u

Q Q

and converges in L
2 
(0,T;L

2
(X)) and weakly in V to u when X + 0+ . Eut for any

t E (0,T):
2 2 +ta(u ft.') = tAuu ,

1/2 1u(t) 2  2 Iu ()I 2 + a 0,u x- + x'Ux k (u(), u\ nV.

0 0

Since 0 4 u C u r 1 , the right-hand side (which is formally egual to

u1 d Eu ) is less than d Eu (see [8] prop. 1-3). Hence, ron sny \, ''

:o ,t]xx Q

1/2 u X 0

Xs



For the first inequality, let w c Q open ai,. u P with u > I a.e. or -. r

any compact K c w , there exists T E K(Q) r W + eaual to 1 on K and with su~rrt in

w (see (8], Lemma 11-2). Then, if uK is the capacitary potential of K , E u,' -s

carried by K (see (8], [10!). Therefore:

(11) cOK) = f d E u K f d~u

0 Q

Now, if u, is the solution of (10) where u is replaced by U , since

au.
-+ Au X ) 0 and 4 u , we have:

au x
f , dEux WO (,co),u (o)) + fT ( _.+ Au,)
Q 

0
aux

4 (u(o), u (o)) + fT ( 2 + AuA, U).
0

Using u E P , we obtain:

f d Eu X (u(0), uA(0)) + (u(T), uA(T))+ 'Ta(u,u) + a(ulu)

Q 0

When X goes to 0+, E uX converges to Eu in ti., sense of measure. Hence, usina (il,

we have:

(12) c 0(K) 1 lu(0)l 2lu K(0)12 + Iu(T)I 2u K(T)2 + 1Ta(u,u K) + a(u K,u)
0

But if P W $ there exists a nondecreasing sequence of compacts K z w such that

&J n
C0(K n ) converges to c 0 Mu and uK  weakly converges to u, in V' (see for instance

n
[8] Prop. 11-4). Then, passing to the limit in (12), we obtain that there existr r

depending only on M (see (5)) such that:

c 0 (W) .9 c))f u) t2

This together with (9) completes the proof of (i) in Theorem I.

Proof of (ii) in Theorem 1.

It is a direct consequence of the part (i) and the followina proposition.



Proposition 3. There xists > s h that

i) Vu , with

V 11 U, : vll'

vv *~u P with
'Iq v :;Uu: (C(

Proof of Pronosition 3.

For (i), given u - we consider the solution v of:

- v * *

(13) V ,1K v(T) u(T ,- + A (t)v = A (t)u + A(t)U

By well-known results about these linear parabolic equations (see Lions-Maaenes 51 ), suc,

a solution exists in it' and there exists a constant c depending only on A(t) sucl.

that:

i c -lu(T)i 2  + IA+ :A(t)uI!V,

That is:

! v l k 'u ",

where k depends only on A(t). Moreover, we formally have:

• +
- (v-u) + A (tyv-u) -= + A(t)u ) 0 (since u - V.

Since (v-u)(T) = 0 , by the maximum princirle, v > u . This formal computation can he

justified in the following way. Civen f L
2 

(0,T;L
2

(X)), f ) 0 , let us consider th-

solution ,: of:

w ,w( ) = + A (t)w f
at

2y the maximriu principle (see (7)), f , 0 w 0 • Put

'T w 'T, 3v *
T ± A(t)w,V (",,T) w(T))+ - T + A (t)v,w •

7Thin Imnlies

"(f,v,,-u) h v .IT)) + - u, + a(u,w)It

'i a . . 0 en d I ' , t 'i d- -h an " . is no nn' ,n a t-i,79 . An i s a rb it ra rv , jq

',r ( 1 . V•i i''r t/ W,,er

12 } : - t'f ": i' ' "/ . [: "" ., 4 " '



Using the results of Mignot-Puel [6], it can be shown (see also (81 Lemma 1I-1) that

u eP and is the limit in L2(0,TIL 2X)) and weakly in V of the solution u of the

penalized problem
au

uc P, u (n) ' - + A(t)u - -(uC - v) = 0 C > 0)
e t C C

But, for any t E (0,T):

SIu 2 IvCO 12 + ftau)u ft(C + Au u~

-t ( (uV)-,u-v) + f taut + AueV)

0 0

(u (t),v(t)) - (v(O),vCO)) + ft( v *.£ .~.+ A v,u)E 0

Passing to the limit gives

I/2 iu(t)i + llull 4 lu(ti 2 iv(t)i 2  + I'- a + A'vll Ilull

Hence, there exists a constant k depending only on At) such that:

1!u1^ A < k 11vh1W  * ll,

Since u c P and u v this completes the proof.

In order to prove the Proposition 2, let us introduce for any E c Q

W = {v W+; v lir v in W with v ) 1 a.e. on a neighbourhood of E).
E n nn-

PE - {u -P; u n P with u lir u in V , lr supllunl A ( 1lu11A

E n n
u(T) = lir u (T) in L X) and u n I on a neighbourhood of E 1.

n n

If E = w is an open set, we immediately have:

W - {v - W v)1 a.e. on w).

P - {u , P u ) 1 a.e. on w).
W

Moreover, we verify that, for any E C Q

c1(E) = inf(uIA u P

, 2 (M) = inf{lvi% W v a

Perark that Wr is a closed convex set in WU . Hence, if vt is the projection of 0

'n ;E in the Hilbert snace , then c2 () = v 1

-11-



temma 1. For any nondecreasina sequence (En) of subsets of :

(i) W = W E
n n n n

(ii) P = P
E 'JE

n n rl n

To prove Lemma 1, we will need the following consequence of the Proposition 3:

lemma 2. There exists k > 0 such that, for any v W , there exists w LI with:

w > IvI, 11w[ W  4 kllvllul

Proof of LemT 2.

Let v E L , by (ii) in Proposition 3, there exist u1,u2  P such that

u 1 V , u 2  > V , 11 , Ilu 2 11 A 4 kI v11 .

:ow by (i) of the same proposition, there exists w i with

w ) u1 + u 2 , liwil W 4 kllu 1 + u 2 11̂

+
Then, w ; v + v = IvI and satisfied

2
I1wilW 1 2k 1lv1i W

1lernark. As a consequence of (7), if v . V , then v+ , v- and IvI also belona to V an:!

the norm of Ivi in V can be estimated in terms of the norm of v .

But, there is no suc, estimate in (W (see L. Tartar's remark in app'-ndix). jcww.'

mm, 2 will be sufficient for our purposp.

z'r)of of Lemma 1.

lo t F =n En ; the inclusions (L'E L, I ' P PE are ohvious.

n n
Let V F th,n there exists vn  (V with v ) 1 on a neiahborhool

n

r and n 2 
- n . The serie- vn) is converaino 1 ' .

S,'.i ?, there exists wn  Li with

Wn V - v I, ;!wniL W, klivn+i -vnI,

:'nce tho serie w is converainq in Wi.
n

Now ;t qn v +  
w If k > n:

n n

1:0..: 0 t -12-



k-1 k-1
Sn W~ Vn + (v -v)v )i a.e. on

9 n + 7 i v.Onw
n n

Hence, g n 1 a.e. on w which is a neighborhood of E and v = lim n in
n+1

Therefore v 6 WE •

Now let u En P i then there exists un E P such that 1iu - unII Vn EnV

+ 1u(T) - u (T)l 4 ( nand u 0 1 on a neighborhood w of E F Por any A > 0 , we
n 2 n n n n

consider the solution of

v 
A 

E W v X(T) =u (T)n ' n

v X+ X- +A~vA Un + A(Au + Au.n n n n n

Then, by [8] Lemma IV-1, v A u. (Remark that formally v - u + -. (v'n- un)

au n n n n n

+ -U - + Aun) ; 0) . Moreover, for X fixed, v converqes in W to the

solution ofJ CA T, - uT)

-+ - + A -v) u + X(Au + A*u).

Indeed:

v _ 11 W ( cX (Ilun - u1 V + 1un(T) - u(T)i2 ).

n

Since v X u  0 1 on W as in the proof of Lemma 2, for any 0 ,we cann n n '

construct g n W converging in W to v with g n 1 on a neighborhood of - Let u

choose g,- g such that 1{g, - v II1 r X.
n, W

By Proposition 3, there exists u. P with uX g - v and Ilu kI -v

4 kA. Moreover, by the results in [81, Section IV, there exists a convex combination C'

the v (still denoted by v ) such that:

- v converges to u in V

- lim II v lul{^

- if u inf{u P u u v u - v converqes to 0 in ,

-13-



tn Ii in I2 Cr I L . (X) ain i Ir -

V~n 'rl) rs r arc ,1 :, fL-a
IS -:I 1r e re' ,

For (c), renark t f-V, for i , 1

c KM) '% irf C.'K
n

.ow, '-r F > 0. thierP xistq a n-iqhoro,' ! r K - Y Stir
" 

that

C1(W c (K) + F , 1 c (K) +

But as Kn  is a sequence of compacts 'ecreasing to K f for r large enough,

K - j Hence:
n C

ir.f ci(Kn ) ( cfVn ) ci(' ( ci (y) + C
n

For (iii), we use the ;uha.dtivtv f . and 11it

-14A



3") Application.

We nroved in rpi that the elementm of 4' are ouesi--Ontinuous. We will give here a

more direct proof osina essentially the equivalent iesiniti.,n of the capacity given by

Theorem I in terms of te Lk-norm, together with Lemma 2. (e also !7] for abstract

"elliptic" results of this kind).

we recall that, oi-en a capacity c(.) on :

rDefinition. A function v Q I t is said to be quasi-contiauous if there exists a

nonincreasing sequence of open net wn. Q with

) lim C(W 0n
nn

(ii) the restriction of v to the complement of w
n

is continuous for all n .

Remark. This definition is clearly invariant when one replaces c(.) by an " equivalent"

capacity ;(.), that is a capacity satisfying for some a , 0:

a,b > 0 , - Q , a-c(E) 4 [c(m)]
a  

hc(E)

Hence the notion of quasi-continuity is the same for our capacities eO(*, cI (.I and

c 2( ).

Theorem 2. Any element v of U has a unique auasi-continuous representation v

Remark. "Uniaue" means here that, if is ouasi-continuous and satisfies v - v a.e.,

then v - v quasi - everywhere (i.e. everywhere except on a set of zero capacity).

Proof of Theorem 2.

Let v A; b7 density of K() W in W , there exist v W K(Q) converging to v with

n1 nIvn+1 vn;Ia, < + .

Let n - z ; 1Vn l(z) - V (z)l > 2
- n }  

and - n~ p

Ry Lemma 2, there exists wn  U' with

w n Iv - v I , ''w n V- n

Hence

4. 2 L c Us wn z) > 2 n) 'I4 n =wr

I____________-___-



proves tht V ) ut, forAny n

n

,Vl'vn 1 ( 
n n

v TI converges uniformly on the complement of each p The limit v is define]

o1,.i-evrywhere (everywhere except on 2' which is of zero capacity), *, is -uas:-
P P

crt nous ans v = v a.e.

'r the univueness, let is consider v cuasi-continuoiis with v = v a.a. ar'l

.. of open sets associated with v - v (see the definition above). Then, An,

. 2 : v - v < n! , w is open for any n. Since {z Q; V - v < 0. is of "easur ,
n

, for all n . Hence:

c 2{z Q; v - v < 0) r lim c 2(A ) = lira 2( n ) = 0 .
n . n

...ik. The above property of the elements of W is a fundamental tool in the stuly or

t ,tructure of parabolic potentials as well as in the resolution of associated

variational inequalities (see [9]).

Apr-'I ix (Communication of L. Tartar) (see Lemma 2).
N2 1 .,.

Proposiiion. Given 2 a regular hounde4 set of U , tor W - (v L (0,T; 0 (.4);

0,T;H-1(2))}, there does not exist any (continuous) function Co1.:[O,-) * '0, s

2l- I[ crv: I.
It I :L2 (0,T;HI1

Let a 1H.) and f W 1,2(0,1) with0 n
2

, if'2 = 1 f con%'eroeq in . (0,1) to 0 when n ooes to
n L (0,1)

1r instance f (t)= - rl + sin n t: with =i
n n

'.%w, app"Inq (I' to Vn(t) = fn(t)a , since Iv = fnlal, one would have:

I a'I F I!a ; ' '

1, notI truI.. (I (I,-) tat-.- 4;r in nsv r a, - n i )

-iF
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